Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Accurate monitoring of crop condition is critical to detect anomalies that may threaten the economic viability of agriculture and to understand how crops respond to climatic variability. Retrievals of soil moisture and vegetation information from satellite-based remote-sensing products offer an opportunity for continuous and affordable crop condition monitoring. This study compared weekly anomalies in accumulated gross primary production (GPP) from the SMAP Level-4 Carbon (L4C) product to anomalies calculated from a state-scale weekly crop condition index (CCI) and also to crop yield anomalies calculated from county-level yield data reported at the end of the season. We focused on barley, spring wheat, corn, and soybeans cultivated in the continental United States from 2000 to 2018. We found that consistencies between SMAP L4C GPP anomalies and both crop condition and yield anomalies increased as crops developed from the emergence stage (r: 0.4–0.7) and matured (r: 0.6–0.9) and that the agreement was better in drier regions (r: 0.4–0.9) than in wetter regions (r: −0.8–0.4). The L4C provides weekly GPP estimates at a 1-km scale, permitting the evaluation and tracking of anomalies in crop status at higher spatial detail than metrics based on the state-level CCI or county-level crop yields. We demonstrate that the L4C GPP product can be used operationally to monitor crop condition with the potential to become an important tool to inform decision-making and research.more » « less
-
Abstract This paper reviews the current state of high‐resolution remotely sensed soil moisture (SM) and evapotranspiration (ET) products and modeling, and the coupling relationship between SM and ET. SM downscaling approaches for satellite passive microwave products leverage advances in artificial intelligence and high‐resolution remote sensing using visible, near‐infrared, thermal‐infrared, and synthetic aperture radar sensors. Remotely sensed ET continues to advance in spatiotemporal resolutions from MODIS to ECOSTRESS to Hydrosat and beyond. These advances enable a new understanding of bio‐geo‐physical controls and coupled feedback mechanisms between SM and ET reflecting the land cover and land use at field scale (3–30 m, daily). Still, the state‐of‐the‐science products have their challenges and limitations, which we detail across data, retrieval algorithms, and applications. We describe the roles of these data in advancing 10 application areas: drought assessment, food security, precision agriculture, soil salinization, wildfire modeling, dust monitoring, flood forecasting, urban water, energy, and ecosystem management, ecohydrology, and biodiversity conservation. We discuss that future scientific advancement should focus on developing open‐access, high‐resolution (3–30 m), sub‐daily SM and ET products, enabling the evaluation of hydrological processes at finer scales and revolutionizing the societal applications in data‐limited regions of the world, especially the Global South for socio‐economic development.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
